

## Concurrent and Independent $\text{HCO}_3^-$ and $\text{Cl}^-$ Secretion in a Human Pancreatic Duct Cell Line (CAPAN-1)

**H.S. Cheng<sup>1</sup>, P.Y. Leung<sup>1</sup>, S.B. Cheng Chew<sup>1</sup>, P.S. Leung<sup>1</sup>, S.Y. Lam<sup>1</sup>, W.S. Wong<sup>1</sup>, Z.D. Wang<sup>2</sup>, H.C. Chan<sup>1</sup>**

<sup>1</sup>Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong

<sup>2</sup>Department of Physiology, Faculty of Medicine, Jinan University, Guangzhou, China

Received: 17 October 1997/Revised: 3 April 1998

**Abstract.** The present study investigated both  $\text{HCO}_3^-$  and  $\text{Cl}^-$  secretions in a human pancreatic duct cell line, CA-PAN-1, using the short-circuit current ( $I_{sc}$ ) technique. In  $\text{Cl}^-/\text{HCO}_3^-$ -containing solution, secretin (1  $\mu\text{M}$ ) or forskolin (10  $\mu\text{M}$ ) stimulated a biphasic rise in the  $I_{sc}$  which initially reached a peak level at about 3 min and then decayed to a plateau level after 7 min. Removal of external  $\text{Cl}^-$  abolished the initial transient phase in the forskolin-induced  $I_{sc}$  while the plateau remained. In  $\text{HCO}_3^-/\text{CO}_2$ -free solution, on the contrary, only the initial transient increase in  $I_{sc}$  was prominent. Summation of the current magnitudes observed in  $\text{Cl}^-$ -free and  $\text{HCO}_3^-$ -free solutions over a time course of 10 min gave rise to a curve which was similar, both in magnitude and kinetics, to the current observed in  $\text{Cl}^-/\text{HCO}_3^-$ -containing solution. Removal of external  $\text{Na}^+$  greatly reduced the initial transient rise in the forskolin-induced  $I_{sc}$  response, and the plateau level observed under this condition was similar to that obtained in  $\text{Cl}^-$ -free solution, suggesting that  $\text{Cl}^-$ -dependent  $I_{sc}$  was also  $\text{Na}^+$ -dependent. Bumetanide (50  $\mu\text{M}$ ), an inhibitor of the  $\text{Na}^+/\text{K}^+$ - $2\text{Cl}^-$  cotransporter, and  $\text{Ba}^{2+}$  (1 mM), a  $\text{K}^+$  channel blocker, could reduce the forskolin-induced  $I_{sc}$  obtained in  $\text{Cl}^-/\text{HCO}_3^-$ -containing or  $\text{HCO}_3^-$ -free solution. However, they were found to be ineffective when external  $\text{Cl}^-$  was removed, indicating the involvement of these mechanisms in  $\text{Cl}^-$  secretion. On the contrary, the  $\text{HCO}_3^-$ -dependent (in the absence of external  $\text{Cl}^-$ ) forskolin-induced  $I_{sc}$  could be significantly reduced by carbonic anhydrase inhibitor, acetazolamide (45  $\mu\text{M}$ ). Basolateral application of amiloride (100  $\mu\text{M}$ ) inhibited the  $I_{sc}$ ; however, a specific  $\text{Na}^+/\text{H}^+$  exchanger blocker, 5-N-methyl-N-isobutylamiloride (MIA, 5–10  $\mu\text{M}$ ) was found to be ineffective, excluding the involve-

ment of the  $\text{Na}^+/\text{H}^+$  exchanger. However, an inhibitor of  $\text{H}^+$ -ATPase, N-ethylmaleimide did suppress the  $I_{sc}$  ( $\text{IC}_{50} = 22 \mu\text{M}$ ). Immunohistochemical studies also confirmed the presence of a vacuolar type of  $\text{H}^+$ -ATPase in these cells. H<sub>2</sub>DIDS (100  $\mu\text{M}$ ), an inhibitor of  $\text{Na}^+/\text{HCO}_3^-$  cotransporter, was without effect. Apical addition of  $\text{Cl}^-$  channel blocker, diphenylamine-2,2'-dicarboxylic acid (DPC, 1 mM), but not disulfonic acids, DIDS (100  $\mu\text{M}$ ) or SITS (100  $\mu\text{M}$ ), exerted an inhibitory effect on both  $\text{Cl}^-$  and  $\text{HCO}_3^-$ -dependent forskolin-induced  $I_{sc}$  responses. Histochemical studies showed discrete stainings of carbonic anhydrase in the monolayer of CA-PAN-1 cells, suggesting that  $\text{HCO}_3^-$  secretion may be specialized to a certain population of cells. The present results suggest that both  $\text{HCO}_3^-$  and  $\text{Cl}^-$  secretion by the human pancreatic duct cells may occur concurrently and independently.

### Introduction

The current pancreatic secretory model based on study results obtained from the rat suggests that  $\text{HCO}_3^-$  is accumulated through the conversion of basolaterally entered  $\text{CO}_2$  into carbonic acid by carbonic anhydrase and proton extrusion through the basolateral membrane via the  $\text{Na}^+/\text{H}^+$  exchanger.  $\text{HCO}_3^-$  is secreted into the lumen through the  $\text{Cl}^-/\text{HCO}_3^-$  exchanger working in parallel with the apical  $\text{Cl}^-$  channel (reviewed by Novak, 1990; Argent & Case, 1994). The major difficulty with the current model is that there is no mechanism for active  $\text{Cl}^-$  accumulation although a recent study using a mathematical model has predicted that the resting intracellular  $\text{Cl}^-$  concentration of the duct cells is quite high and that the current pancreatic duct model cannot support secretion of  $\text{HCO}_3^-$  at the higher concentrations found in the pancreatic juice of cats, guinea pigs, dogs and men

(Sohma et al., 1996). In addition, recent studies have shown that other mechanisms, such as a vacuolar-type  $\text{H}^+$ -ATPase (Raeder, 1992) and a  $\text{Na}^+$ - $\text{HCO}_3^-$  cotransporter (Zhao, Star, & Muallem, 1994; Ishiguro et al., 1996a), may also be involved in pancreatic  $\text{HCO}_3^-$  secretion. All these indicate that the current pancreatic secretory model requires modification. Furthermore, it remains to be determined whether the current model could be applied to the pancreatic ducts of humans since no work on human ductal cells has ever been reported.

We undertook the present study to investigate the cellular mechanisms involved in the cAMP-dependent secretory processes in a human pancreatic duct cell line, CAPAN-1, using the short-circuit current technique. CAPAN-1 was used since it had been shown to conserve most of the properties of ductal epithelial cells (Kyriazis et al., 1982; Levrat et al., 1988) and possess apical cAMP-dependent  $\text{Cl}^-$  channels which are crucial to  $\text{HCO}_3^-$  secretion (Becq et al., 1992, 1993). Therefore, CAPAN-1 appears to be a useful model for the study of pancreatic ductal secretory mechanisms of human origin considering the limited supply of intact human pancreatic ducts. The results of the present study indicate an active  $\text{Cl}^-$  accumulation mechanism which may be involved in  $\text{Cl}^-$  as well as  $\text{HCO}_3^-$  secretion by the pancreatic duct cells. Evidence is presented to suggest that the current model may not accurately describe the secretory processes in the pancreatic duct of human origin.

## Materials and Methods

### MATERIALS

Hank's balanced salt solution (HBSS) was purchased from Sigma Chemical (St. Louis, MO). RPMI 1640 medium and fetal bovine serum, trypsin-EDTA were supplied by Gibco Laboratories (New York).

The following drugs were supplied by Sigma Chemical (St. Louis, MO): 4,4'-diisothiocyanostibene-2,2'-disulfonic acid (DIDS), forskolin, secretin, Glucose, sodium bicarbonate, N-methyl-D-glucamine (NMDG), calcium gluconate, N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) and chemicals used in enzyme histochemistry: glutaraldehyde, sodium cacodylate, hydrochloric acid, Cobalt sulfate, sulfuric acid and potassium hydrogen phosphate. Amiloride hydrochloride was obtained from Merck Sharp & Dohme Research (Rahway, NJ). Calcium chloride, magnesium sulfate, potassium chloride, sodium chloride, sodium dihydrogen phosphate were obtained from Merck (Darmstadt, Germany). Potassium gluconate and sodium gluconate were from BDH Chemicals (Poole, England).

### CELL CULTURE

Human pancreatic duct cell line, CAPAN-1, was purchased from American Type Culture Collection (Maryland) at passage of 23. Experiments were performed on cells of passages 27–38. Cells were grown in RPMI 1640 medium with 15% fetal bovine serum. When cells were disassembled from the culture flask, 0.25% trypsin-EDTA

was added with extra care to avoid striking on cell layer directly. Quickly afterwards, less than 1 min, most of the trypsin was removed leaving about 0.5 ml in the flask which was then incubated for 2–3 min. Cells were then resuspended in serum-containing medium with gentle pipetting of the cells to break up the cell aggregations. The suspension was then transferred into a centrifuge tube for spinning at  $800 \times g$  for 5 min to remove any trypsin left. Supernatant was discarded and the cells were resuspended with a desirable volume of medium to make up to a final cell concentration of  $1.5 \times 10^6/\text{ml}$ . A volume of 0.25 ml of the cell suspension was then plated onto each permeable support, which was made of a Millipore filter and a silicon ring with a confined area of  $0.45 \text{ cm}^2$ , floating on culture medium and incubated at  $37^\circ\text{C}$  with 5%  $\text{CO}_2$ /95%  $\text{O}_2$  in air atmosphere for 4–5 days till the monolayers reached confluence and were ready for  $I_{sc}$  measurement and histochemical staining.

### SHORT-CIRCUIT CURRENT MEASUREMENT

The basic principles of the short-circuit current experiments performed in the present study were the same as previously described (Ussing & Zerahn, 1951). Monolayers grown on permeable supports were clamped vertically between two halves of the Ussing chamber and bathed in Krebs-Henseleit (K-H) solutions with following composition (mm):  $\text{NaCl}$ , 117;  $\text{KCl}$ , 4.7;  $\text{MgSO}_4$ , 1.2;  $\text{KH}_2\text{PO}_4$ , 1.2;  $\text{NaHCO}_3$ , 24.8;  $\text{CaCl}_2$ , 2.56; Glucose, 11.1; with an osmolarity of 285 mOsm gassed with 95%  $\text{O}_2$  and 5%  $\text{CO}_2$ . In some experiments, gluconate and NMDG were used to replace anions,  $\text{Cl}^-$  or  $\text{HCO}_3^-$ , and cation,  $\text{Na}^+$ , respectively. When gluconate was used, free  $\text{Ca}^{2+}$  concentration in the bath solution was measured by a  $\text{Ca}^{2+}$  electrode and titrated to a final concentration of 2.5 mM. For  $\text{HCO}_3^-$ -free solution, HEPES and Tris were used and the solution was gassed in 100%  $\text{O}_2$ .

All the electrodes were connected to the voltage-current clamp amplifier (DVC-1000, World Precision Instrument, Sarasota, FL). The signal output from the amplifier was the  $I_{sc}$  measured and was recorded online by the use of a chart recorder (Kipp & Zonen, Delft, Netherlands). A 0.1-mV voltage pulse was applied intermittently across the epithelium and the transepithelial conductance was calculated from the corresponding current changes.

### THE HISTOCHEMICAL STAINING TECHNIQUE

The method used for the demonstration of carbonic anhydrase activity in cryostat sections was described by Rosen (1970). CAPAN-1 cell culture was fixed for approximately 1 hr in 3% glutaraldehyde and then rinsed in 0.17 M cacodylate buffer (pH 7.5) solution. Cryostat sections of 8  $\mu\text{m}$  were picked up on Millipore filters and then incubated in a mixture of solutions containing 3.5 mM  $\text{KH}_2\text{PO}_4$  with 1.75 mM  $\text{CoSO}_4$ , 54 mM  $\text{H}_2\text{SO}_4$  and 157 mM  $\text{NaHCO}_3$  for 20 min. Control sections were done using the similar incubation mixture containing 10  $\mu\text{M}$  acetazolamide. After the staining procedure, the sections were rinsed in saline, dehydrated, and mounted with permount. Micrographs were taken with a Leica DMRBE microscope.

### IMMUNOHISTOCHEMISTRY

CAPAN-1 cells grown on filters were frozen in embedding medium using isopentane. Cryostat sections (8  $\mu\text{m}$ ) were cut and fixed in 4% paraformaldehyde for 15 min. Samples were then processed for indirect immunofluorescence technique. Samples were first incubated overnight at  $4^\circ\text{C}$  with monoclonal antibody (20  $\mu\text{g}/\text{mL}$ ) against the 60 kDa subunit of a vacuolar type of  $\text{H}^+$ -ATPase (Molecular Probes, Eugene, OR). After washing several times with PBS, samples were in-

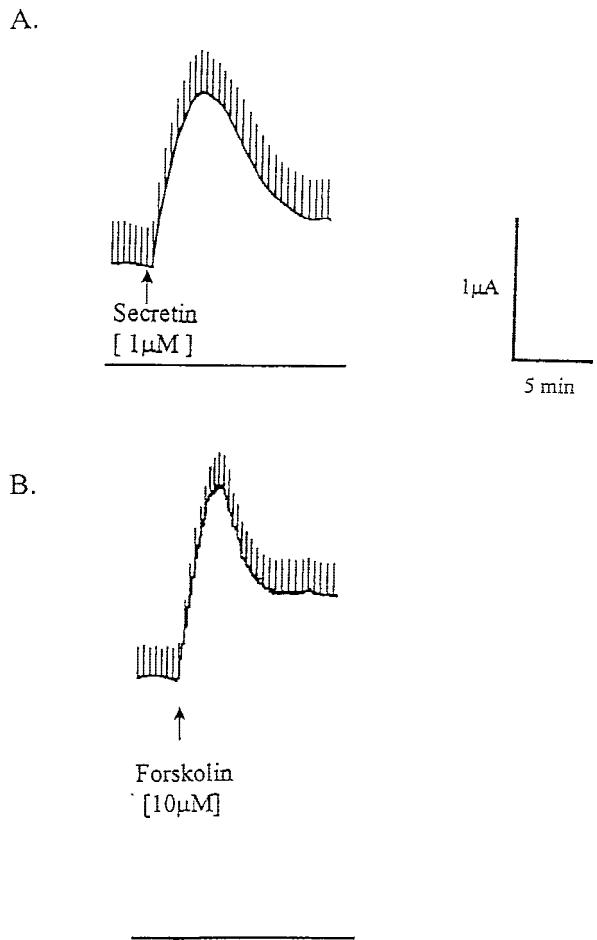
cubated with anti-mouse IgG-fluorescein conjugated secondary antibody. Samples were then examined by confocal laser scanning microscopy.

## STATISTICAL ANALYSIS

Results were expressed as mean  $\pm$  SEM. Comparisons between groups of data were carried out using Student's unpaired *t*-test. A *P*-value less than 0.05 was considered to be statistically significant.

## Results

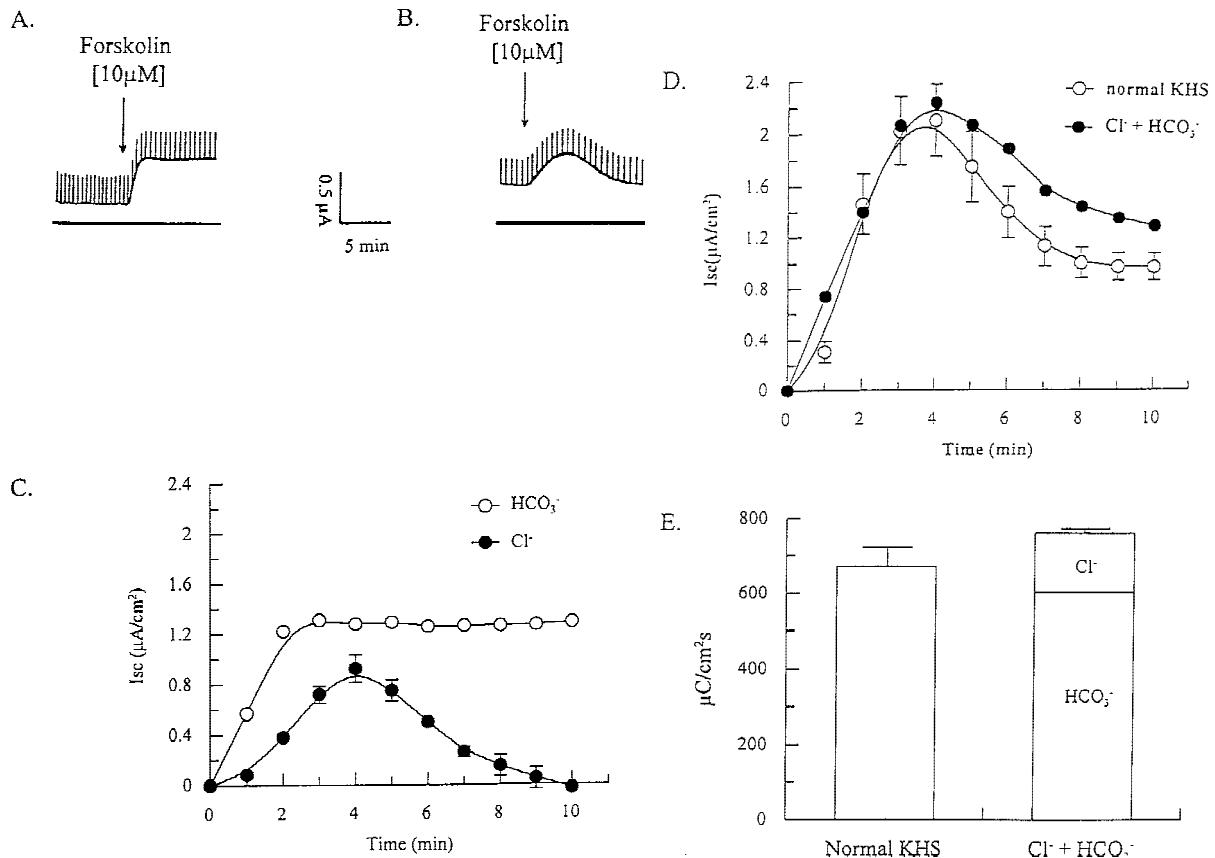
### ELECTROPHYSIOLOGICAL PROPERTIES OF THE CULTURED CAPAN-1 MONOLAYER


Cultured monolayers were grown on permeable supports at a density of  $1.5 \times 10^6/\text{ml}$  for four to five days. When they were clamped in Ussing chambers bathing with normal K-H solution ( $\text{Cl}^-/\text{HCO}_3^-$ -containing), a transepithelial potential difference of  $0.2 \pm 0.02 \text{ mV}$  ( $n = 20$ ) was usually observed, the apical side negative with respect to that of the basolateral side. A small basal current of  $1.32 \pm 0.37 \mu\text{A}/\text{cm}^2$  ( $n = 20$ ) was measured. The transepithelial resistance of the monolayers was  $119 \pm 9.7 \Omega \text{ cm}^2$  ( $n = 20$ ), which was somewhat higher than the values observed in isolated perfused duct of the rat (Novak & Greger, 1988a).

### $I_{sc}$ INDUCED BY cAMP-EVOKING AGENTS

When CAPAN-1 monolayers were challenged with basolateral addition of secretin ( $1 \mu\text{M}$ ), one of the physiological regulators of pancreatic secretion via stimulation of cAMP, a biphasic rise in  $I_{sc}$  was observed, with an initial transient peak followed by a plateau ( $n = 8$ , Fig. 1A). Forskolin ( $10 \mu\text{M}$ ), an adenylate cyclase activator, also induced a rise in  $I_{sc}$  (Fig. 1B) with a characteristic similar to that obtained under stimulation with secretin. An initial peak level of about  $2.1 \pm 0.3 \mu\text{A}/\text{cm}^2$  was reached at 3.5 min and followed by a plateau level of  $1.0 \pm 0.1 \mu\text{A}/\text{cm}^2$  after 7 min ( $n = 13$ ). No obvious change in transepithelial conductance after stimulation was observed. Since both secretin and forskolin yielded similar results, the following experiments were performed using forskolin as the agonist.

### CONCURRENT AND INDEPENDENT $\text{Cl}^-$ AND $\text{HCO}_3^-$ SECRETION


Ion substitution experiments were carried out to study the ionic basis underlying the biphasic nature of the forskolin-induced  $I_{sc}$ . When external  $\text{Cl}^-$  was removed leaving  $\text{HCO}_3^-$  as the major permanent anion in the bathing solution, the initial peak of the forskolin-induced  $I_{sc}$



**Fig. 1.**  $I_{sc}$  in response to cAMP-evoking agents. (A) Representative recording of the  $I_{sc}$  activated by physiological regulator, secretin ( $1 \mu\text{M}$ , basolateral,  $n = 8$ ), with arrow marking the time at which secretin was added and the horizontal line represents zero  $I_{sc}$ . (B) Mimicking the secretin-activated  $I_{sc}$  by forskolin ( $10 \mu\text{M}$ ), an adenylate cyclase activator, ( $n = 13$ ). Experiments were performed in K-H solution ( $\text{Cl}^-/\text{HCO}_3^-$ -containing). Note the presence of biphasic characteristic in both responses.

was not observed. Instead, a slow rise in  $I_{sc}$  reached to a level of about  $1.3 \pm 0.03 \mu\text{A}/\text{cm}^2$  ( $n = 10$ ) and remained at that level for at least 10 min. (Fig. 2A), indicating that  $\text{HCO}_3^-$  contributed largely to the plateau phase. When external  $\text{HCO}_3^-$  and  $\text{CO}_2$  were removed, only a transient rise in  $I_{sc}$  was observed in response to forskolin, with a rise to a peak level of  $0.9 \pm 0.2 \mu\text{A}/\text{cm}^2$  ( $n = 5$ ) at 4 min and decayed to nearly zero level at 10 min,  $n = 5$  (Fig. 2B), indicating the involvement of  $\text{Cl}^-$  in the initial peak phase. When both  $\text{HCO}_3^-$  and  $\text{Cl}^-$  were removed from the bathing solution, the forskolin-induced  $I_{sc}$  response was nearly abolished ( $96 \pm 7\%$ ,  $n = 6$ ).

The averaged forskolin-induced  $I_{sc}$  obtained in different solutions is shown in Fig. 2C. It is interesting to note that the summation of  $\text{Cl}^-$ -dependent and  $\text{HCO}_3^-$ -dependent currents gave rise to a curve which was simi-



**Fig. 2.** Effect of  $\text{Cl}^-$  or  $\text{HCO}_3^-$  removal on the forskolin-activated  $I_{sc}$ .  $I_{sc}$  responses to forskolin ( $10 \mu\text{M}$ ) obtained in  $\text{Cl}^-$ -free ( $\text{HCO}_3^-$ -containing,  $n = 10$ ) solution (A), and in  $\text{HCO}_3^-/\text{CO}_2$ -free ( $\text{Cl}^-$ -containing,  $n = 5$ ) solution (B). (C) Averaged forskolin-induced  $I_{sc}$  obtained in the two solutions exhibiting different kinetic characteristics. (D) Comparison of the forskolin-induced  $I_{sc}$  obtained in K-H ( $\text{Cl}^-/\text{HCO}_3^-$  containing) solution and the summated  $I_{sc}$  obtained in the presence of  $\text{Cl}^-$  alone and  $\text{HCO}_3^-$  alone. (E) Comparison of the total charges, calculated from the area under curves, across the epithelium in various solutions. No significant difference was found.

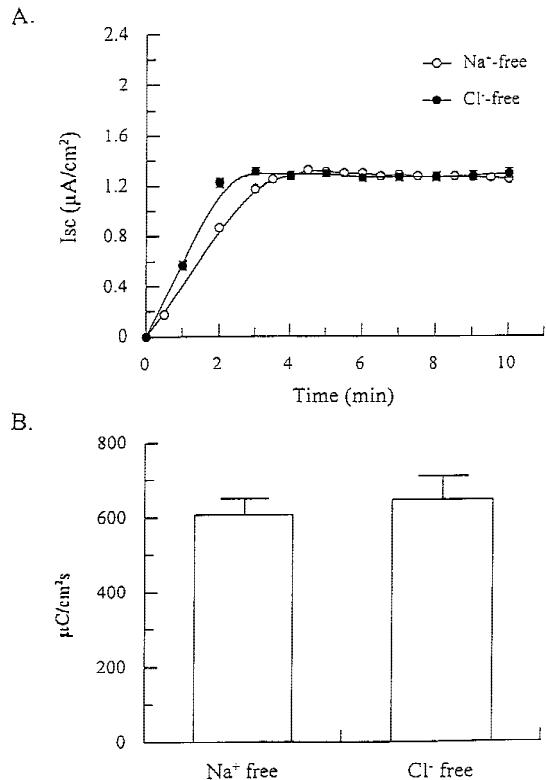
lar to the averaged forskolin-induced  $I_{sc}$  obtained in  $\text{Cl}^-/\text{HCO}_3^-$ -containing solution, both in kinetics and magnitude (Fig. 2D and E). Thus,  $\text{Cl}^-$  secretion and  $\text{HCO}_3^-$  secretion may occur in CAPAN-1 cells concurrently and independently.

#### $\text{Na}^+$ DEPENDENCE OF THE FORSKOLIN-INDUCED $I_{sc}$

Since anion secretion may be through a  $\text{Na}^+$ -dependent secondary active transport mechanism, the  $\text{Na}^+$ -dependence of the forskolin-induced  $I_{sc}$  was also examined. In  $\text{Na}^+$ -free solution, the initial phase of the forskolin-induced  $I_{sc}$  normally observed in  $\text{Cl}^-/\text{HCO}_3^-$  solution was greatly reduced while the plateau remained as shown in Fig. 3A. The plateau level obtained in  $\text{Na}^+$ -free solution was similar to that obtained in  $\text{Cl}^-$ -free solution (Fig. 3A). There was no significant difference in the total charge transfer across the monolayers, calculated from the area under curve, between the two cases (Fig. 3B). This suggested that the  $\text{Cl}^-$ -dependent portion of the forskolin-induced  $I_{sc}$  might also be  $\text{Na}^+$ -dependent.

#### CELLULAR MECHANISMS FOR $\text{Cl}^-$ SECRETION

As a portion of the forskolin-induced  $I_{sc}$  was dependent on both  $\text{Na}^+$  and  $\text{Cl}^-$ , it seemed possible that  $\text{Na}^+/\text{K}^+$ - $2\text{Cl}^-$  cotransporter was involved in the secretory process in CAPAN-1 cells. Bumetanide ( $50 \mu\text{M}$ ), an inhibitor of  $\text{Na}^+/\text{K}^+$ - $2\text{Cl}^-$  cotransporter, was applied basolaterally to the monolayers after forskolin stimulation. This resulted in a significant reduction of the forskolin-induced  $I_{sc}$  in  $\text{Cl}^-/\text{HCO}_3^-$ -containing solutions from the control level of  $1.0 \pm 0.1 \mu\text{A}/\text{cm}^2$  to  $0.4 \pm 0.1 \mu\text{A}/\text{cm}^2$  with a total reduction of 60% ( $n = 5$ , Fig. 4A and B). Pretreatment of the cells with bumetanide ( $n = 9$ ) greatly reduced the initial transient phase, but not the plateau, of the forskolin-induced  $I_{sc}$  (Fig. 4C and D). The inhibitory effect of bumetanide was also observed in  $\text{HCO}_3^-$ -free solution (63.8%,  $n = 5$ ); however, bumetanide was found to exert an insignificant effect when external  $\text{Cl}^-$  was removed (Fig. 4E and F), indicating that the effect of bumetanide was on a  $\text{Cl}^-$ -dependent process. Bumetanide was also ineffective in  $\text{Na}^+$ -free solution ( $n = 3$ , not shown).


These results indicated the involvement of a basolaterally located  $\text{Na}^+-\text{K}^+-2\text{Cl}^-$  cotransporter in mediating the  $\text{Cl}^-$ -dependent forskolin-induced  $I_{sc}$ .

The involvement of the  $\text{Na}^+-\text{K}^+-2\text{Cl}^-$  cotransporter suggested a secondary active transport mechanism present in CAPAN-1 cells. To further test this possibility, the effect of ouabain, an inhibitor of the  $\text{Na}^+-\text{K}^+$ -ATPase, on the forskolin-induced  $I_{sc}$  was examined. In monolayers 30 min after treatment with basolaterally applied ouabain (1 mM), forskolin was not able to elicit any  $I_{sc}$  ( $n = 3$ , not shown), indicating the presence of the  $\text{Na}^+-\text{K}^+$ -ATPase. The involvement of basolaterally located  $\text{K}^+$  channels was also investigated since they play an important role in secondary active  $\text{Cl}^-$  transport.  $\text{Ba}^{2+}$  (1 mM), a  $\text{K}^+$  channel blocker, was applied basolaterally to the monolayer after forskolin-stimulation. This induced a drastic reduction (93.3%) in the  $I_{sc}$  from the control level of  $1.7 \pm 0.3 \mu\text{A}/\text{cm}^2$  to  $0.1 \pm 0.01 \mu\text{A}/\text{cm}^2$ , ( $n = 10$ , Fig. 5A). Similar to bumetanide, the inhibitory effect of  $\text{Ba}^{2+}$  was also observed in  $\text{HCO}_3^-$ -free solution (98%,  $n = 5$ ) but not in  $\text{Cl}^-$ -free ( $n = 6$ , Fig. 5B) or  $\text{Na}^+$ -free solution ( $n = 6$ , not shown). Surprisingly, in these solutions  $\text{Ba}^{2+}$  induced a rise in the  $I_{sc}$ , indicating that blocking the  $\text{K}^+$  channels would also affect the  $\text{HCO}_3^-$ -dependent  $I_{sc}$  for a reason that was not immediately apparent (see Discussion). Taken together, the presence of basolaterally located  $\text{Na}^+-\text{K}^+$ -ATPase,  $\text{Na}^+-\text{K}^+-2\text{Cl}^-$  cotransporter and  $\text{K}^+$  channels suggested the involvement of a secondary active transport mechanism for  $\text{Cl}^-$  secretion in CA-PAN-1 cells.

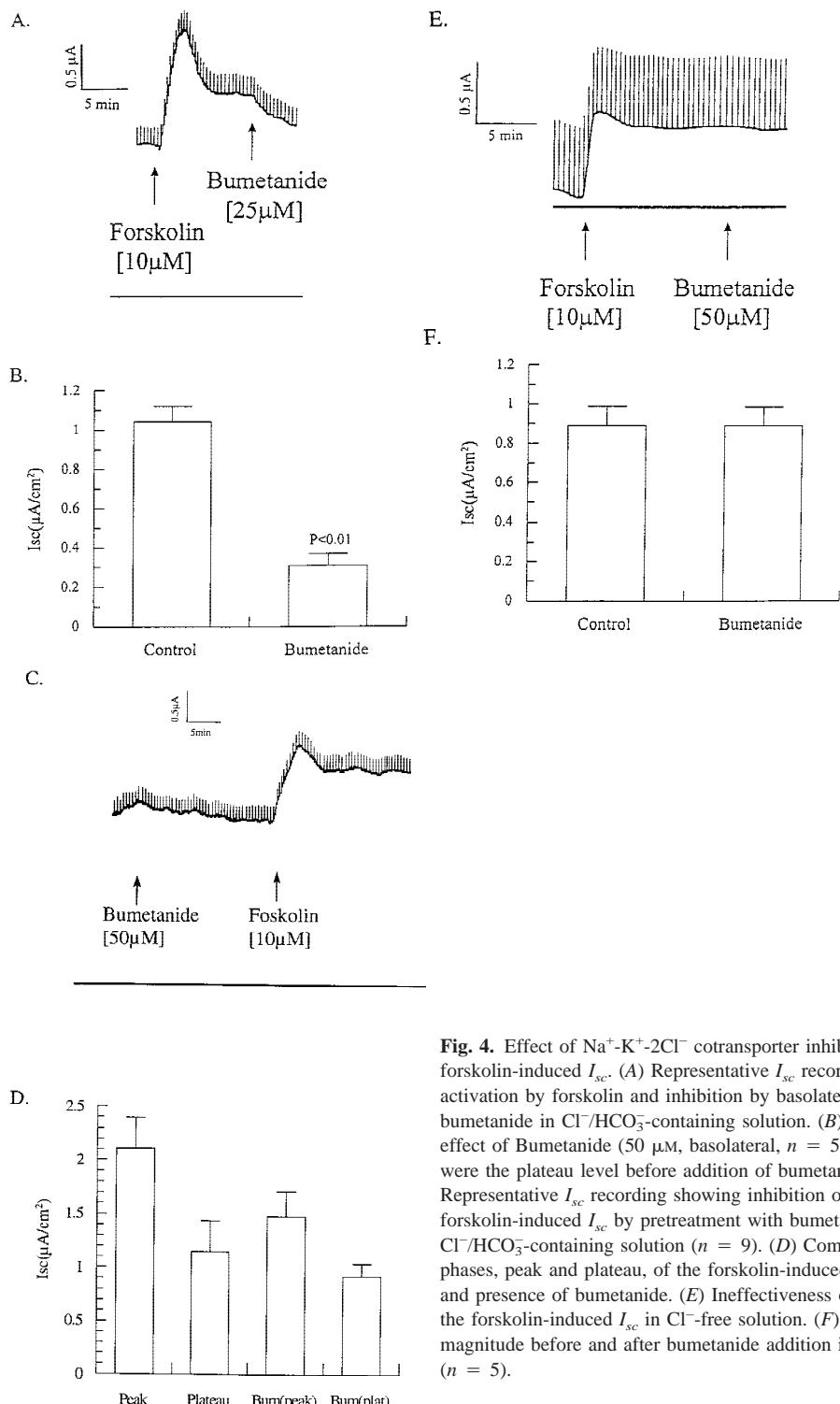
#### CELLULAR MECHANISMS FOR $\text{HCO}_3^-$ SECRETION

The current pancreatic  $\text{HCO}_3^-$ -secretion model requires the conversion of  $\text{CO}_2$  into carbonic acid through the action of carbonic anhydrase (CA). The involvement of CA in CAPAN-1 cells was investigated using a CA inhibitor, acetazolamide. After stimulation with forskolin, acetazolamide (45–100  $\mu\text{M}$ ) was applied to the monolayers bathed in  $\text{Cl}^-/\text{HCO}_3^-$ -containing solution and found to inhibit the  $I_{sc}$  from a level of  $1.5 \pm 0.03 \mu\text{A}/\text{cm}^2$  to  $0.9 \pm 0.04 \mu\text{A}/\text{cm}^2$  with a total reduction of 38.7%,  $n = 6$  (Fig. 6A and B). In contrast to bumetanide or  $\text{Ba}^{2+}$ , the effect of acetazolamide was also found in  $\text{Cl}^-$ -free solution (Fig. 6C), further indicating a role of CA in  $\text{HCO}_3^-$ -secretion.

To sustain  $\text{HCO}_3^-$  secretion,  $\text{H}^+$  must be expelled from the cell through the basolateral membrane, e.g., via the  $\text{Na}^+-\text{H}^+$  exchanger as suggested by the current model. In  $\text{Cl}^-/\text{HCO}_3^-$ -containing solution, amiloride at a concentration of 100  $\mu\text{M}$ , which is known to have an inhibitory effect on  $\text{Na}^+-\text{H}^+$  exchanger, was applied basolaterally resulting in a significant reduction (45.7%) in the  $I_{sc}$  from  $1.3 \pm 0.1 \mu\text{A}/\text{cm}^2$  to  $0.7 \pm 0.1 \mu\text{A}/\text{cm}^2$  ( $n = 4$ , Fig. 7A). Significant inhibition in the forskolin-induced  $I_{sc}$



**Fig. 3.**  $\text{Na}^+$  and  $\text{Cl}^-$  dependence of the forskolin-induced  $I_{sc}$ . (A) Comparison of averaged  $I_{sc}$  obtained in  $\text{Cl}^-$ -free ( $n = 8$ ) and  $\text{Na}^+$ -free but  $\text{Cl}^-/\text{HCO}_3^-$ -containing ( $n = 9$ ) solutions. (B) Comparison of total charges across the epithelium in the two solutions. No significant difference was found.

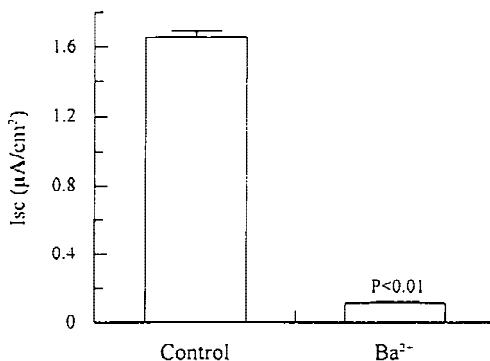

was also observed in the  $\text{Cl}^-$ -free solution ( $n = 5$ ). However, MIA (10  $\mu\text{M}$ ), a more specific  $\text{Na}^+/\text{H}^+$  exchanger inhibitor, was found to be ineffective in blocking the forskolin-induced  $I_{sc}$  ( $n = 4$ , Fig. 7B).

The possible involvement of  $\text{H}^+$ -ATPase was also tested using one of its inhibitors, NEM. Since NEM may also have an effect on other ATPases, we examined the concentration dependence of the inhibitory effect of NEM and a concentration-response curve was constructed (Fig. 8) with an apparent  $\text{IC}_{50}$  of 21.6  $\mu\text{M}$ . This was very similar to the concentration known to inhibit  $\text{H}^+$ -ATPase in the rat kidney (Ait-Mohamed et al., 1986).

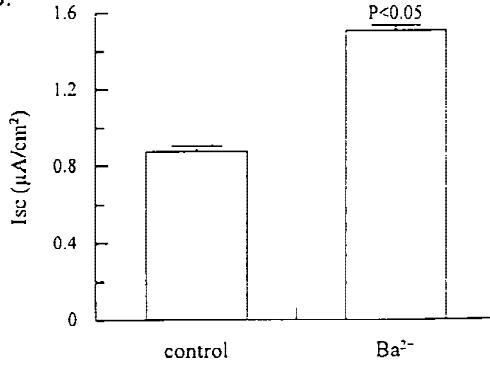
As recently suggested, a CA-independent mechanism,  $\text{Na}^+-\text{HCO}_3^-$  cotransporter, may also be involved in pancreatic ductal  $\text{HCO}_3^-$  secretion (Zhao et al., 1994; Ishiguro et al., 1996a). We examined the effect of H<sub>2</sub>DIDS (150  $\mu\text{M}$ ), an inhibitor of  $\text{Na}^+-\text{HCO}_3^-$  cotransporter, on the forskolin-induced  $I_{sc}$ . However, no inhibitory effect was found ( $n = 5$ , not shown).

#### APICAL TRANSPORT MECHANISMS

The current model suggests that pancreatic  $\text{HCO}_3^-$  secretion requires the operation of an apically located  $\text{Cl}^-$




**Fig. 4.** Effect of  $\text{Na}^+/\text{K}^+$ - $2\text{Cl}^-$  cotransporter inhibitor on the forskolin-induced  $I_{sc}$ . (A) Representative  $I_{sc}$  recording showing activation by forskolin and inhibition by basolateral addition of bumetanide in  $\text{Cl}^-/\text{HCO}_3^-$ -containing solution. (B) Summary of the effect of Bumetanide (50  $\mu\text{M}$ , basolateral,  $n = 5$ ). Control values were the plateau level before addition of bumetanide. (C) Representative  $I_{sc}$  recording showing inhibition of the forskolin-induced  $I_{sc}$  by pretreatment with bumetanide in  $\text{Cl}^-/\text{HCO}_3^-$ -containing solution ( $n = 9$ ). (D) Comparison of the two phases, peak and plateau, of the forskolin-induced  $I_{sc}$  in the absence and presence of bumetanide. (E) Ineffectiveness of bumetanide on the forskolin-induced  $I_{sc}$  in  $\text{Cl}^-$ -free solution. (F) Comparison of  $I_{sc}$  magnitude before and after bumetanide addition in  $\text{Cl}^-$ -free solution ( $n = 5$ ).


$\text{HCO}_3^-$  exchanger in parallel with an apical  $\text{Cl}^-$  channel. In the present study, an inhibitor of the  $\text{Cl}^-/\text{HCO}_3^-$  exchanger, SITS (250  $\mu\text{M}$ ), was found to exert an insignificant effect on the forskolin-induced  $I_{sc}$  in  $\text{Cl}^-/\text{HCO}_3^-$ -containing solution ( $n = 3$ , not shown). In the same

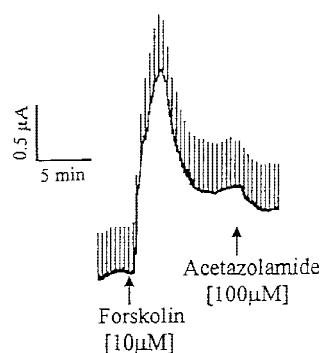
solution, DIDS (200  $\mu\text{M}$ ), which is known to block the exchanger as well as  $\text{Ca}^{2+}$ -dependent  $\text{Cl}^-$  channel, was also ineffective in inhibiting the  $I_{sc}$  (Fig. 9A). However, DPC (1–2 mM), a nonselective  $\text{Cl}^-$  channel blocker with known effect on the cAMP-dependent  $\text{Cl}^-$  channel, pro-

A.

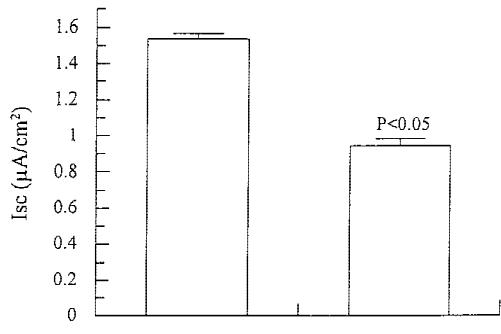


B.

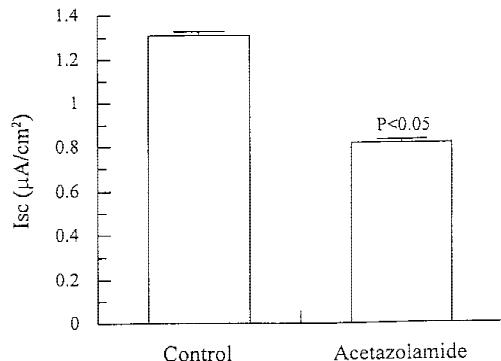



**Fig. 5.** Effect of  $\text{K}^+$  channel blocker on the forskolin-induced  $I_{sc}$ . (A) Averaged inhibitory effect of  $\text{Ba}^{2+}$  on forskolin-induced  $I_{sc}$  in  $\text{Cl}^-/\text{HCO}_3^-$ -containing solution ( $n = 10$ ). (B) Effect of  $\text{Ba}^{2+}$  (1 mM, basolateral) in ( $\text{Cl}^-$ -free)  $\mu\text{M}$ -containing solution ( $n = 6$ ). Note that an increase rather than a decrease in  $I_{sc}$  was observed in this condition.  $\text{Ba}^{2+}$  was added 5 min after stimulation with forskolin. The effects were assessed over a 5-min period after addition of  $\text{Ba}^{2+}$ . The effects were assessed over a 5-min period after addition of  $\text{Ba}^{2+}$ .

duced a potent inhibitory effect on the forskolin-induced  $I_{sc}$  (Fig. 9A), reducing the  $I_{sc}$  from  $2.2 \pm 0.5 \pm 0.04 \mu\text{A}/\text{cm}^2$  ( $n = 10$ ). The effects of DIDS and DPC are summarized in Fig. 9B.


We further examined how DPC affected different processes, e.g., the peak (mainly  $\text{Cl}^-$ -dependent) or the plateau (mainly  $\text{HCO}_3^-$ -dependent) phase of the forskolin-induced  $I_{sc}$ . Experiments were conducted by pretreating the monolayers with DPC in different bathing solutions. In  $\text{Cl}^-/\text{HCO}_3^-$ -containing solution, pretreatment of the monolayers ( $n = 6$ ) with apical addition of DPC (1 mM) for 10 min resulted in large suppression of the forskolin-stimulated  $I_{sc}$ , the initial peak as well as the plateau phase (Fig. 10A).

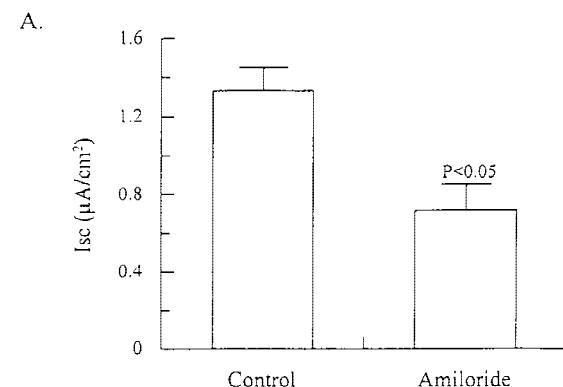
When monolayers were bathed in  $\text{Cl}^-$ -free solution, the  $\text{HCO}_3^-$ -dependent  $I_{sc}$  was also suppressed by DPC treatment ( $n = 4$ ) (Fig. 10B), indicating that DPC-sensitive  $\text{Cl}^-$  channels may be important for both  $\text{Cl}^-$  and  $\text{HCO}_3^-$  secretion in CAPAN-1 cells.


A.

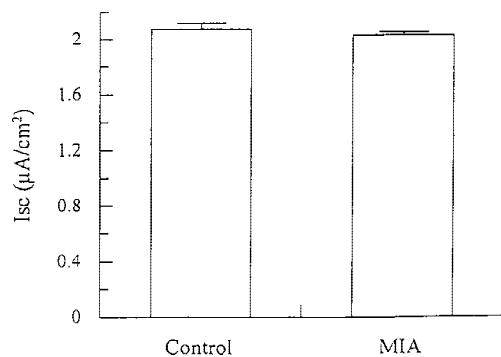


B.




C.




**Fig. 6.** Effect of carbonic anhydrase inhibitor on the forskolin-induced  $I_{sc}$ . (A) Representative  $I_{sc}$  recording showing activation by forskolin and inhibition by acetazolamide in  $\text{Cl}^-/\text{HCO}_3^-$ -containing solution. (B) Averaged inhibitory effect of acetazolamide (100  $\mu\text{M}$ , basolateral) on forskolin-induced  $I_{sc}$  in  $\text{Cl}^-/\text{HCO}_3^-$ -containing solution ( $n = 6$ ). (C) Effect of acetazolamide obtained in  $\text{Cl}^-$ -free ( $\text{HCO}_3^-$ -containing) solution. Cultured monolayers were pretreated with acetazolamide (45  $\mu\text{M}$ ) before the stimulation by forskolin ( $n = 6$ ).

#### DISTRIBUTION OF CARBONIC ANHYDRASE IN CAPAN-1 CELLS

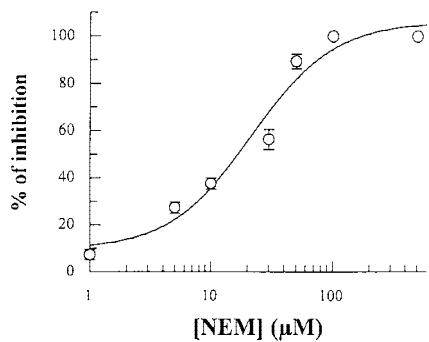
Our data suggested that  $\text{HCO}_3^-$ -dependent forskolin-induced  $I_{sc}$  was mediated by CA-dependent mechanism. To confirm this, histochemical studies were performed to examine the distribution of CA in CAPAN-1 cells. Figure 11A shows positive staining for CA while acetazolamide-treated monolayer (Fig. 11B) exhibited negative staining. It was interesting to find that the distribution of



B.

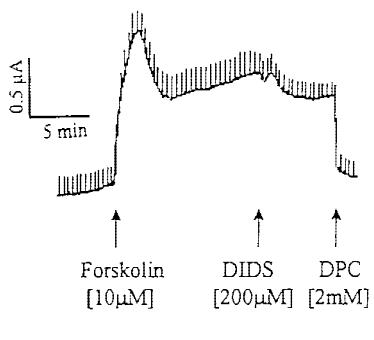


**Fig. 7.** Effect of  $\text{Na}^+$ - $\text{H}^+$  exchanger blockers on the forskolin-induced  $I_{sc}$ . (A) Summary of the effect of amiloride (100  $\mu\text{M}$ , basolateral,  $n = 4$ ). (B) Ineffectiveness of a more specific inhibitor of  $\text{Na}^+$ - $\text{H}^+$  exchanger, MIA (10  $\mu\text{M}$ ,  $n = 3$ ) on the  $I_{sc}$ . The experiments were performed in  $\text{Cl}^-$ / $\text{HCO}_3^-$ -containing solution.

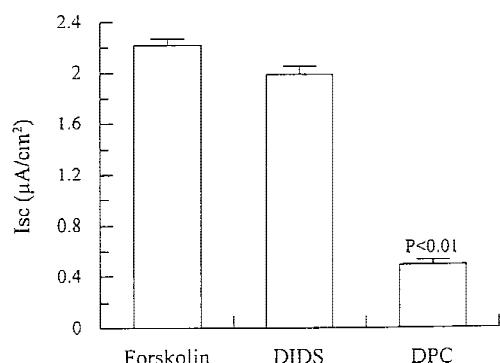

CA staining throughout the culture of CAPAN-1 was discrete, suggesting that not all the cells were involved in  $\text{HCO}_3^-$ -secretion.

#### IMMUNOLocalization of VACUOLAR $\text{H}^+$ -ATPase

Positive immunoreactivity of the vacuolar  $\text{H}^+$ -ATPase was observed in both the apical and basal regions of CAPAN-1 monolayers (Fig. 12A). Negative immunostaining was found in the control section in which the primary antibody was omitted (Fig. 12B).


#### Discussion

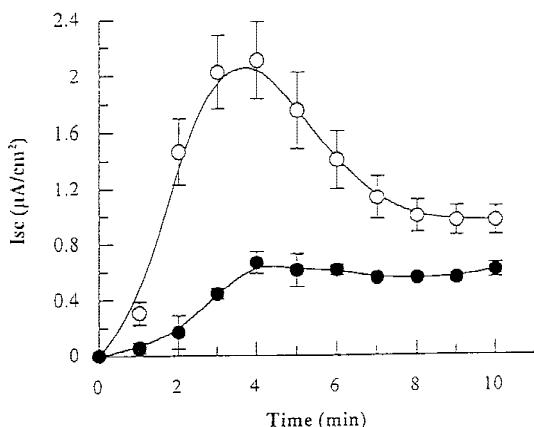
The present study has demonstrated for the first time the anion secretory mechanisms in the pancreatic duct cells of human origin. The present study has provided evidence showing that reconstituted cultured monolayers of



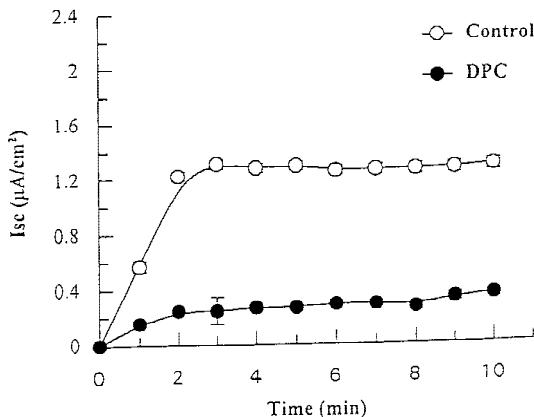

**Fig. 8.** Concentration-response curve of  $\text{H}^+$ -ATPase inhibitor, NEM. Percentage of  $I_{sc}$  inhibition was plotted against various NEM concentrations added basolaterally. The  $IC_{50}$  was about 22  $\mu\text{M}$ .

A.




B.

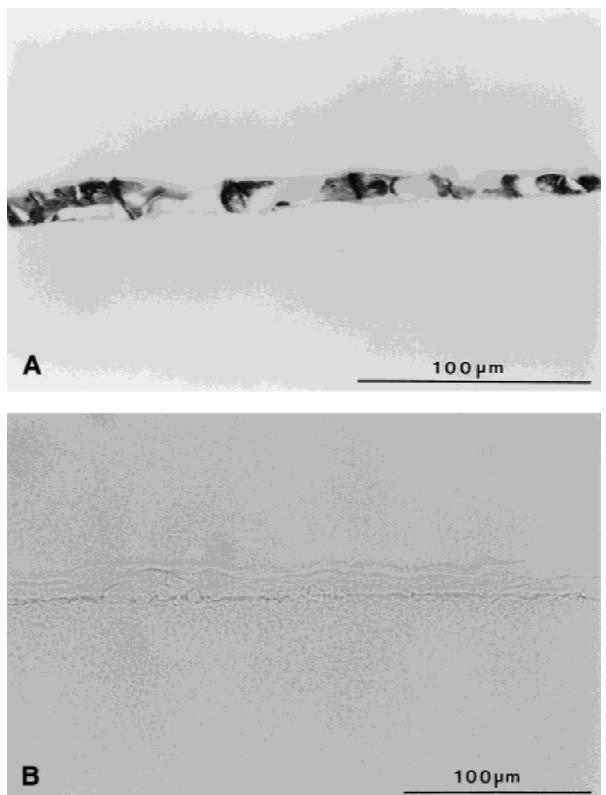



**Fig. 9.** Comparison of the effects of DIDS and DPC on the  $I_{sc}$ . (A)  $I_{sc}$  recording showing the effect of DPC (2 mM) and DIDS (100  $\mu\text{M}$ ) on the forskolin-stimulated  $I_{sc}$ . (B) Summary of the results of blockers showing that DPC but not DIDS had a prominent inhibitory effect ( $n = 10$ ).

CAPAN-1 cells are capable of secreting  $\text{Cl}^-$  as well as  $\text{HCO}_3^-$ . The observations that the forskolin-induced  $I_{sc}$  was dependent on external  $\text{Cl}^-$  and  $\text{HCO}_3^-$ / $\text{CO}_2$ , and inhibitable by agents with known effects on either  $\text{Cl}^-$  secretion (e.g., bumetanide,  $\text{Ba}^{2+}$ ) or  $\text{HCO}_3^-$  secretion (e.g., acetazolamide) suggest that CAPAN-1 cells secrete both of these anions under the stimulation of cAMP.

A.

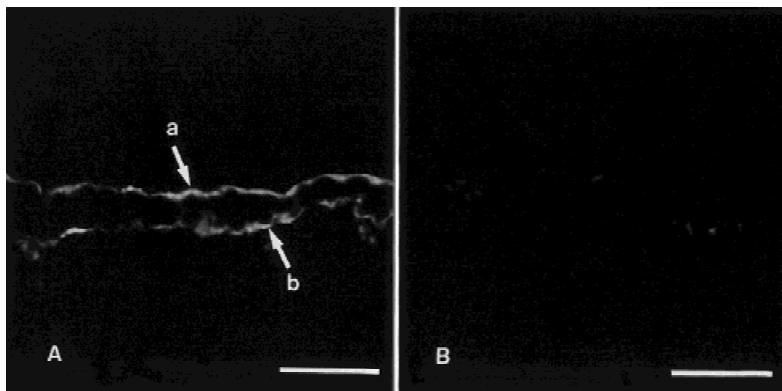



B.



**Fig. 10.** The inhibitory effect of DPC on  $\text{Cl}^-$  and  $\text{HCO}_3^-$ -dependent  $I_{sc}$  stimulated by forskolin. Averaged forskolin-induced  $I_{sc}$  obtained from control and monolayers pretreated with DPC (1 mM) in  $\text{Cl}^-/\text{HCO}_3^-$ -containing solution (A) and  $\text{HCO}_3^-$ -containing solution (B).

The fact that the  $I_{sc}$  can be stimulated by secretin, an important physiological regulator of pancreatic secretion, further indicates the conservation of ductal secretory properties in CAPAN-1 cells. A comparison of charge transfer across the epithelium under  $\text{Cl}^-$ -free or  $\text{HCO}_3^-$ -free condition, calculated from areas under curves, suggests that over 80% of the forskolin-induced  $I_{sc}$  was  $\text{HCO}_3^-$ -dependent. This is also consistent with the previous finding that cAMP stimulates  $\text{HCO}_3^-$ -rich fluid in the pancreatic ducts (reviewed by Argent & Case, 1994). These results indicate that CAPAN-1 cells may be a useful model for the study of secretory mechanisms of the pancreatic ducts.


The results of the present study suggest that conversion of  $\text{CO}_2$  into carbonic acid through carbonic anhydrase appears to be a crucial step in  $\text{HCO}_3^-$ -production by CAPAN-1 cells since the forskolin-induced  $I_{sc}$  was inhibitable by an inhibitor of carbonic anhydrase, acetazol-



**Fig. 11.** Histochemical staining for carbonic anhydrase. (A) Light micrograph of CAPAN-1 monolayer grown on permeable support for 5 days showing positive reaction of carbonic anhydrase activity (magnification:  $\times 470$ ). There are also cells which do not exhibit this enzyme. (B) Control monolayer showing negative staining (magnification:  $\times 370$ ).

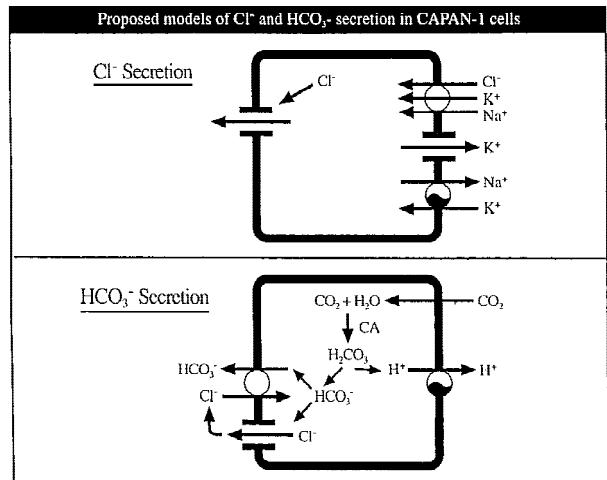
amide. The presence of carbonic anhydrase in CAPAN-1 cells was also confirmed by histochemical studies. Although a  $\text{Na}^+/\text{HCO}_3^-$  cotransporter has been recently implicated in  $\text{HCO}_3^-$  cotransporter has been recently implicated in  $\text{HCO}_3^-$  accumulation in the pancreatic ducts of the rat (Zhao et al., 1994) and guinea-pig (Ishiguro et al., 1996a,b), the present study does not seem to indicate its involvement in CAPAN-1 cells. This is based on the present observations that H<sub>2</sub>DIDS, an inhibitor of  $\text{Na}^+/\text{HCO}_3^-$  cotransporter, was ineffective in blocking the forskolin-induced  $I_{sc}$  and that removal of external  $\text{Na}^+$  did not seem to affect the  $\text{HCO}_3^-$ -dependent  $I_{sc}$ .

In the present study the forskolin-induced  $I_{sc}$  was sensitive to an  $\text{H}^+$ -ATPase inhibitor, NEM, as well as an  $\text{Na}^+/\text{H}^+$  exchanger inhibitor, amiloride, indicating a possible role of these transporters in  $\text{HCO}_3^-$  secretion. While amiloride could inhibit the  $I_{sc}$  at 100  $\mu\text{M}$  as reported by many previous studies, this could be due to its inhibitory effect on cellular metabolism as previously shown for amiloride analogues (Soltoff, Cragoe & Mandel, 1986). In the present study, a more specific  $\text{Na}^+/\text{H}^+$  ex-



**Fig. 12.** Immunofluorescence staining of  $\text{H}^+$ -ATPase in cryosections of the human CAPAN-1 cell. (A) Distinct immunoreactivity was observed in the apical (a) and basal (b) regions of the CAPAN-1 cells grown on the filters. (B) Immunoreactivity was not observed in the control experiment when the primary antibody was omitted. Scale bar = 50  $\mu\text{m}$ .

changer inhibitor, MIA, was found to be ineffective in blocking the forskolin-induced  $I_{sc}$  indicating the absence of this exchanger in CAPAN-1 cells. Another line of evidence excluding the involvement of the  $\text{Na}^+/\text{H}^+$  exchanger is that the  $\text{HCO}_3^-$ -dependent  $I_{sc}$ , e.g., the plateau phase, was not affected by the removal of external  $\text{Na}^+$ . On the other hand, our data suggest that the  $\text{H}^+$ -ATPase may be involved in  $\text{HCO}_3^-$  secretion. Although one can argue that NEM, like other inhibitors of proton pumps, may have nonspecific effects on other ATPases, the observed  $\text{IC}_{50}$  value in the present study is in close agreement with that reported to block a vacuolar-type of  $\text{H}^+$ -ATPase in the rat kidney (Ait-Mohamed et al., 1986). Another important piece of evidence came from the seemingly surprising stimulatory effect of  $\text{Ba}^{2+}$  observed in  $\text{Cl}^-$ -free solution. Like bumetanide, we expected that  $\text{Ba}^{2+}$  would not have an inhibitory effect on the forskolin-induced  $I_{sc}$  in the absence of  $\text{Cl}^-$ , however, we did not anticipate a rise in the  $I_{sc}$  upon addition of  $\text{Ba}^{2+}$ . This observation could be explained if a voltage-sensitive  $\text{H}^+$ -ATPase was placed in the basolateral membrane. When basolateral  $\text{K}^+$  channels are blocked by  $\text{Ba}^{2+}$ , this would result in a depolarization of the membrane that could then drive a highly voltage-sensitive pump as shown previously for a vacuolar-type of  $\text{H}^+$ -ATPase in *Rana Esculenta* skin (Ehrenfeld et al., 1985). Thus, the observed rise in the  $\text{HCO}_3^-$ -dependent forskolin-induced  $I_{sc}$  upon addition of  $\text{Ba}^{2+}$  may be secondary to a depolarization-induced activation of  $\text{H}^+$ -ATPase. Taken together, our data suggest that a  $\text{H}^+$ -ATPase, rather than the  $\text{Na}^+/\text{H}^+$  exchanger, appears to be involved in  $\text{HCO}_3^-$  secretion in CAPAN-1 cells. It should be noted that several lines of evidence in support of the involvement of a  $\text{H}^+$ -ATPase in pancreatic duct secretion have been reported (reviewed by Raeder, 1992). Our immunohistochemical studies also confirm the presence of a vacuolar-type  $\text{H}^+$ -ATPase in CAPAN-1 cells. However, to our surprise, it is localized to the apical as well as the basolateral membrane. The function of the apically located  $\text{H}^+$ -ATPase is not immediately apparent.


In contrast to the current model of pancreatic  $\text{HCO}_3^-$

secretion, which relies on the entry of luminal  $\text{Cl}^-$  through the  $\text{Cl}^-/\text{HCO}_3^-$  exchanger and recycling of  $\text{Cl}^-$  through apical  $\text{Cl}^-$  channels, the present results suggest the segregation of the apical  $\text{Cl}^-$  channel and the  $\text{Cl}^-/\text{HCO}_3^-$  exchanger if it is indeed present in CAPAN-1 cells at all. First, in the absence of external  $\text{Cl}^-$ , under which condition the  $\text{Cl}^-/\text{HCO}_3^-$  exchanger would have been disabled, over 80% of the forskolin-induced  $I_{sc}$  was still observed, indicating that the majority of the  $\text{HCO}_3^-$  secreted is not dependent on the operation of the  $\text{Cl}^-/\text{HCO}_3^-$  exchanger. Second, SITS and DIDS did not seem to have a significant effect on the forskolin-induced  $I_{sc}$  while DPC inhibited most of the  $\text{HCO}_3^-$ -dependent as well  $\text{Cl}^-$ -dependent  $I_{sc}$ , indicating the dependence of both  $\text{HCO}_3^-$  and  $\text{Cl}^-$  secretion on the apical  $\text{Cl}^-$  channel. Our data are consistent with the previous finding of an apical cAMP-dependent  $\text{Cl}^-$  channel in the pancreatic duct (Novak & Greger, 1988b; Gray, Greenwell & Argent, 1988; Gray et al., 1990c). In addition, these data suggest that not only could  $\text{Cl}^-$  but also  $\text{HCO}_3^-$  be secreted through the apical DPC-sensitive pathway, most likely, the apical  $\text{Cl}^-$  channel. This notion is supported by patch-clamp studies showing measurable  $\text{HCO}_3^-$  permeability through  $\text{Cl}^-$  channels in pancreatic duct cells (Gray et al., 1990c; Gray et al., 1990a).  $\text{HCO}_3^-$  conductance as well as pH regulatory capability has also been demonstrated in cells transfected with cystic fibrosis transmembrane conductance regulator (CFTR) (Poulsen et al., 1994), a cAMP-dependent  $\text{Cl}^-$  channel itself (reviewed by Welsh, 1996). The presently observed sensitivity of the  $\text{HCO}_3^-$ -dependent, as well as  $\text{Cl}^-$ -dependent, forskolin-induced  $I_{sc}$  to DPC, a  $\text{Cl}^-$  channel blocker with known effect on CFTR, suggests that the reduced  $\text{HCO}_3^-$ -secretion observed in CF may be directly due to reduced permeability of  $\text{HCO}_3^-$  through defect CFTR rather than an indirect effect secondary to the reduced  $\text{Cl}^-$  permeability as suggested by the current model.

As far as we are aware no active transport mechanism for  $\text{Cl}^-$  accumulation in the pancreatic duct has been suggested. The present results indicate a secondary active transport mechanism for  $\text{Cl}^-$  secretion in CA-

PAN-1 cells. The supporting evidence includes: (i) portion of the forskolin-induced  $I_{sc}$  was  $\text{Na}^+$  and  $\text{Cl}^-$ -dependent; (ii)  $\text{Na}^+-\text{K}^+$ -ATPase inhibitor, ouabain, blocked the forskolin-induced  $I_{sc}$ ; and (iii) bumetanide and  $\text{Ba}^{2+}$  inhibited the  $I_{sc}$  but not when external  $\text{Na}^+$  and  $\text{Cl}^-$  was removed, indicating the involvement of basolaterally located  $\text{Na}^+-\text{K}^+-2\text{Cl}^-$  cotransporter and  $\text{K}^+$  channels. Together with the apical  $\text{Cl}^-$  channels (see above), the above transporters could mediate the cAMP-dependent  $\text{Cl}^-$  secretion in CAPAN-1 cells via the secondary active transport mechanism well documented in many other epithelia (Welsh, 1983; Case et al., 1984; Sato & Sato, 1987; Wong, 1988). While  $\text{Na}^+-\text{K}^+$ -ATPase has been demonstrated in the cat and rat (Bundgaard, Moller & Poulsen, 1981; Madden & Sarras, 1987),  $\text{K}^+$  channels are also found in ducts of the rat (Novak & Greger, 1988a; Gray et al., 1989; Gray et al., 1990b). However, the bumetanide-sensitive  $\text{Na}^+-\text{K}^+-2\text{Cl}^-$  cotransporter has not been demonstrated in the pancreatic ducts of any species. The presently observed effect of bumetanide could also be attributed to a  $\text{Na}^+-\text{Cl}^-$  cotransporter (Hass, 1994).

Although the current model for pancreatic secretion does not describe  $\text{Cl}^-$  secretion, impaired  $\text{Cl}^-$  secretion as well as  $\text{HCO}_3^-$  secretion, has been observed in the pancreas of patients with cystic fibrosis (Gaskin et al., 1982; Kopelman et al., 1988), thus indicating a role of  $\text{Cl}^-$  secretion in the normal function of the pancreas. The present study is the first to describe an active  $\text{Cl}^-$  accumulation mechanism in pancreatic duct cells. This mechanism may be responsible for a  $\text{Cl}^-$ -rich fluid secreted by the rat ducts under stimulation by  $\text{Ca}^{2+}$ -evoking agents, e.g., acetylcholine (Ashton et al., 1993) and the ATP and angiotensin II-activated  $\text{HCO}_3^- \text{Cl}^-$  secretion by the CF pancreatic duct cells, CAPAN-1 (Chan et al., 1996, 1997). This mechanism could also allow active  $\text{Cl}^-$  accumulation required to drive  $\text{HCO}_3^-$  secretion at high concentrations which cannot be supported by the current model (Sohma et al., 1996). Our data do suggest possible dependence of  $\text{HCO}_3^-$  secretion on  $\text{Cl}^-$  accumulation. Note that in the present study the  $\text{Cl}^-$ -dependent forskolin-induced  $I_{sc}$  (in the absence of  $\text{HCO}_3^-/\text{CO}_2$ ) was only about 20% of that observed in  $\text{Cl}^-/\text{HCO}_3^-$ -containing solution. However, bumetanide and  $\text{Ba}^{2+}$  inhibited the  $I_{sc}$  by more than 60% in the presence of both  $\text{Cl}^-$  and  $\text{HCO}_3^-$ . This can either be explained by a much greater proportion of  $\text{Cl}^-$  secretion in the presence of  $\text{HCO}_3^-$  or a dependence of a portion of the  $\text{HCO}_3^-$  secretion on  $\text{Cl}^-$  accumulation. The former seems unlikely since cAMP is known to stimulate  $\text{HCO}_3^-$ -rich fluid. This leaves the only alternative that a portion of the  $\text{HCO}_3^-$  secretion relies on the active  $\text{Cl}^-$  accumulation; e.g., when  $\text{Cl}^-$  accumulation is blocked, a portion of the  $\text{HCO}_3^-$  secretion is also inhibited. The apparent inconsistency in the proportion of  $\text{HCO}_3^-$ -dependent  $I_{sc}$  ob-



**Fig. 13.** Proposed model of  $\text{Cl}^-$  and  $\text{HCO}_3^-$ -secretion in CAPAN-1 cells. The cellular mechanisms for  $\text{Cl}^-$  and  $\text{HCO}_3^-$  secretion are described separately as suggested by the present results.

served in the absence of  $\text{Cl}^-$  (over 80%) and that of the presumed  $\text{HCO}_3^-$ -dependent  $I_{sc}$  (<40%) observed in the presence of both  $\text{Cl}^-$  and  $\text{HCO}_3^-$  after treatment with the inhibitors for  $\text{Cl}^-$  accumulation suggests that the secretory mechanism in the presence of both  $\text{Cl}^-$  and  $\text{HCO}_3^-$  may be more complicated. The detail of the mechanism of how  $\text{HCO}_3^-$  secretion may be dependent on  $\text{Cl}^-$  remains to be elucidated.

Although there might be interaction between  $\text{Cl}^-$  and  $\text{HCO}_3^-$ , the present study has clearly demonstrated that  $\text{Cl}^-$  and  $\text{HCO}_3^-$  secretion in CAPAN-1 cells may occur independently since forskolin could stimulate  $I_{sc}$  in the absence of either  $\text{Cl}^-$  or  $\text{HCO}_3^-$ . Our data also indicate that some of the mechanisms involved in  $\text{Cl}^-$  secretion do not seem to affect the  $\text{HCO}_3^-$ -dependent forskolin-induced  $I_{sc}$  in the absence of  $\text{Cl}^-$ , and *vice versa*, as though the two processes were entirely separate. The discrete distribution of CA in CAPAN-1 cells indicates possible segregation of  $\text{HCO}_3^-$  and  $\text{Cl}^-$  secretions at the cellular level. Based on these findings, we propose a secretory model consisting of two separate transport mechanisms for  $\text{HCO}_3^-$  and  $\text{Cl}^-$  secretion in CAPAN-1 cells (Fig. 13). The notion that different secretions, e.g.,  $\text{Cl}^-$ -rich vs.  $\text{HCO}_3^-$ -rich, may be mediated by different cells in different regions of the pancreas has long been suggested (Mangos & McSherry, 1971; Swanson & Solomon, 1973; Lightwood & Reber, 1977). Although this could explain readily the independent  $\text{HCO}_3^-$  and  $\text{Cl}^-$  secretions observed in the present study, it would be difficult to account for any interaction which might occur between these secretory processes as observed in the present study if their cellular mechanisms were localized to different cell populations.

In summary, the present study is the first attempt to study secretory mechanisms in the pancreatic duct cells

of human origin. The results show that CAPAN-1 cells are capable of secreting both  $\text{Cl}^-$  and  $\text{HCO}_3^-$  concurrently and independently. The results of the present study indicate that the currently accepted model of pancreatic secretion may not apply to the pancreatic duct of humans, or that the current model requires modification as suggested by the growing body of evidence obtained recently from a number of animal species.

The authors wish to thank Ms. S.K. Fong, Eddie So and Vincent Law for their technical assistance. The work was supported by the RGC of Hong Kong, the Strategic Program of CUHK and New Asia College of CUHK.

## References

Ait-Mohamed, A.K., Marsy, S., Barlet, C., Khadouri, C., Doucet, A. 1986. Characterization of N-Ethylmaleimide-sensitive protein pump in the rat kidney. *J. Biol. Chem.* **261**:12526–12533

Argent, B.E., Case, R.M. 1994. Pancreatic ducts — cellular mechanism and control of bicarbonate secretion. In: *Physiology of the Gastrointestinal Tract*. L.R. Johnson, editor. 3rd edition, pp. 1473–1397. Raven Press, New York

Ashton, N., Evans, R.L., Elliott, A.C., Green, R., Argent, B.E. 1993. Regulation of fluid secretion and intracellular messengers in isolated rat pancreatic ducts by acetylcholine. *J. Physiol.* **471**:549–562

Becq, F., Fanjul, M., Mahieu, I., Berger, Z., Gola, M., Hollande, E. 1992. Anion channels in a human pancreatic cancer cell line (CAPAN-1) of ductal origin. *Pfluegers Arch.* **420**:46–53

Becq, F., Hollande, E., Gola, M. 1993. Phosphorylation-regulated low-conductance  $\text{Cl}^-$  channels in a human pancreatic duct cell line. *Pfluegers Arch.* **425**:1–8

Bundgaard, M., Moller, M., Poulsen, J.H. 1981. Localization of sodium pumps in cat pancreas. *J. Physiol.* **313**:405–414

Case, R.M., Hunter, M., Novak, I., Young, J.A. 1984. The anionic basis of fluid secretion by the rabbit mandibular salivary gland. *J. Physiol.* **349**:619–630

Chan, H.C., Cheung, W.T., Leung, P.Y., Wu, L.J., Cheng Chew, S.B., Ko, W.H., Wong, P.Y.D. 1996. Purinergic regulation of anion secretion by CF pancreatic duct cells. *Am. J. Physiol.* **271**:C469–C477

Chan, H.C., Law, S.H., Leung, P.S., Wong, P.Y.D. 1997. Angiotensin II receptor type I-regulated anion secretion in cystic fibrosis pancreatic duct cells. *J. Membrane Biol.* **156**:241–249

Cheng, H.S., Chan, H.C. 1997. Independent  $\text{Cl}^-$  and  $\text{HCO}_3^-$  secretion in human pancreatic duct cells. *FASEB J.* **11**:A305

Ehrenfeld, J., Garcia-Romeu, F., Harvey, B.J. 1985. Electrogenic active proton pump in *Rana Esculenta* skin and its role in sodium ion transport. *J. Physiol.* **359**:331–355

Gaskin, K.J., Durie, P.R., Corey, M., Wei, P., Forstner, G.G. 1982. Evidence for a primary defect of pancreatic  $\text{HCO}_3^-$  secretion in Cystic Fibrosis. *Pediat. Res.* **16**:554–557.

Gray, M.A., Greenwell, J.R., Argent, B.E. 1988. Secretin-regulated  $\text{Cl}^-$  channel on the apical plasma membrane of pancreatic duct cells. *J. Membrane Biol.* **105**:131–142

Gray, M.A., Greenwell, J.R., Argent, B.E. 1990a. The role of ion channels in the mechanism of pancreatic bicarbonate secretion. In: *Epithelial Secretion of Water and Electrolytes*. J.A. Young, and P.Y.D. Wong, editors. pp. 254–265. Springer-Verlag, Berlin

Gray, M.A., Greenwell, J.R., Garton, A.J., Argent, B.E. 1990b. Regulation of Maxi- $\text{K}^+$  channels on pancreatic duct cells by cAMP-dependent phosphorylation. *J. Membrane Biol.* **115**:203–215

Gray, M.A., Harris, A., Coleman, L., Greenwell, J.R., Argent, B.E. 1989. 2 types of  $\text{Cl}^-$  channel on duct cells cultured from human fetal pancreas. *Am. J. Physiol.* **257**:C240–C251

Gray, M.A., Pollard, C.E., Harris, A., Coleman, L., Greenwell, J.R., Argent, B.E. 1990c. Anion selectivity and block of the small conductance  $\text{Cl}^-$  channel on pancreatic duct cells. *Am. J. Physiol.* **259**:C752–C761

Hass, M. 1994. The  $\text{Na}-\text{K}-\text{Cl}$  cotransporters. *Am. J. Physiol.* **267**: C869–C885

Ishiguro, H., Steward, M.C., Lindsay, A.R.G., Case, R.M. 1996a. Accumulation of intracellular  $\text{HCO}_3^-$  by  $\text{Na}^+-\text{HCO}_3^-$  cotransporter in interlobular ducts from guinea-pig pancreas. *J. Physiol.* **495**:69–178

Ishiguro, H., Steward, M.C., Wilson, M.C., Case, R.M. 1996b.  $\text{HCO}_3^-$  secretion in interlobular ducts from guinea-pig pancreas. *J. Physiol.* **495**:179–191

Kopelman, H., Corey, M., Gaskin, K., Durie, P., Weizman, Z.V.I., Forstner, G. 1988. Impaired chloride secretion, as well as bicarbonate secretion, underlies the fluid secretory defect in the Cystic Fibrosis pancreas. *Gastroenterology* **95**:349–355

Kyriazis, A.P., Kyriazis, A.A., Scarpelli, D.G., Rao, M.S., Fogh, J., Lepera, R. 1982. Human pancreatic adenocarcinoma line capan-1 in tissue culture and the nude mouse. *Am. J. Pathol.* **106**:250–260

Levrat, J.H., Palevsky, C., Daumas, M., Ratovo, G., Hollande, E. 1988. Differentiation of the human pancreatic adenocarcinoma cell line (CAPAN-1) in culture and co-culture with fibroblasts dome formation. *Int. J. Cancer* **42**:615–621

Lightwood, R., Reber, H.A. 1977. Micropuncture study of pancreatic secretion in the cat. *Gastroenterology* **72**:61–66

Madden, M.E., Sarras, M.P. 1987. Distribution of  $\text{Na}^+-\text{K}^+$ -ATPase in rat exocrine pancreas as monitored by  $\text{K}^+$ -NPPase cytochemistry and [ $^3\text{H}$ ]-ouabain binding: a plasma membrane protein found primarily to be ductal cell associated. *J. Histochem. Cytochem.* **35**:1365–1374

Mangos, J.A., McSherry, N.R. 1971. Micropuncture study of excretion of water and electrolytes by the pancreas. *Am. J. Physiol.* **221**:496–503

Novak, I., Greger, R. 1988a. Electrophysiological study of transport systems in isolated perfused pancreatic ducts: properties of the basolateral membrane. *Pfluegers Arch.* **411**:58–68

Novak, I. 1990. Electrolyte transport in pancreatic ducts. In: *Epithelial Secretion of Water and Electrolytes*. J.A. Young and P.Y.D. Wong, editors. pp. 240–252. Springer-Verlag, Berlin

Novak, I., Greger, R. 1988b. Properties of the luminal membrane of isolated perfused rat pancreatic ducts — effect of cyclic AMP and blockers of chloride transport. *Pfluegers Arch.* **411**:546–553

Poulsen, J.H., Fischer, H., Illek, B., Machen, T.E. 1994. Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. *Proc. Natl. Acad. Sci. USA* **91**:5340–5344

Raeder, M.G. 1992. The origin of and subcellular mechanisms causing pancreatic bicarbonate secretion. *Gastroenterology* **103**:1674–1684

Rosen, S. 1970. Localization of carbonic anhydrase activity in transporting urinary epithelia. *J. Histochem. Cytochem.* **18**:668–670

Sato, F., Sato, K. 1987. Effect of periglandular ionic composition and transport inhibitors on rhesus monkey eccrine sweat gland function in vitro. *J. Physiol.* **393**:195–212

Sohma, Y., Gray, M.A., Imai, Y., Argent, B.E. 1996. A mathematical model of the pancreatic ductal epithelium. *J. Membrane Biol.* **154**:53–67

Soltoff, S.P., Cragoe, E.J., Mandel, L.J. 1986. Amiloride analogues

inhibit proximal tubule metabolism. *Am. J. Physiol.* **250**:C744–C747

Swanson, C.H., Solomon, A.K. 1973. A micropuncture investigation of the whole tissue mechanism of electrolyte secretion by the in vitro rabbit pancreas. *J. Gen. Physiol.* **62**:407–429

Ussing, H.H., Zerah, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. *Acta Physiol. Scand.* **23**:110–127

Welsh, M.J. 1983. Inhibition of chloride secretion by furosemide in canine tracheal epithelium. *J. Membrane Biol.* **71**:219–226

Welsh, M.J. 1996. Cystic fibrosis. In: Molecular Biology of Membrane Transport Disorders. S.G. Schultz, T.E. Andreoli, A.M. Brown, D.M. Fambrough, J.F. Hoffman, and M.J. Welsh, editors. pp. 605–623. Plenum Press, New York and London

Wong, P.Y. 1988. Mechanisms of adrenergic stimulation of anion secretion in cultured epididymal epithelium. *Am. J. Physiol.* **254**: F121–F133

Zhao, H., Star, R.A., Muallem, S. 1994. Membrane localization of H<sup>+</sup> and HCO<sub>3</sub><sup>-</sup> transporters in the rat pancreatic duct. *J. Gen. Physiol.* **104**:57–85